Davide Martizzi, Romain Teyssier, Ben Moore, Tina Wentz
The spatial distribution of matter in clusters of galaxies is mainly
determined by the dominant dark matter component, however, physical processes
involving baryonic matter are able to modify it significantly. We analyse a set
of 500 pc resolution cosmological simulations of a cluster of galaxy with mass
comparable to Virgo, performed with the AMR code RAMSES. We compare the mass
density profiles of the dark, stellar and gaseous matter components of the
cluster that result from different assumptions for the subgrid baryonic physics
and galaxy formation processes. First, the prediction of a gravity only N-body
simulation is compared to that of a hydrodynamical simulation with standard
galaxy formation recipes, then all results are compared to a hydrodynamical
simulation which includes thermal AGN feedback from Super Massive Black Holes
(SMBH). We find the usual effects of overcooling and adiabatic contraction in
the run with standard galaxy formation physics, but very different results are
found when implementing SMBHs and AGN feedback. Star formation is strongly
quenched, producing lower stellar densities throughout the cluster, and much
less cold gas is available for star formation at low redshifts. At redshift z =
0 we find a flat density core of radius 10 kpc in both of the dark and stellar
matter density profiles. We specu- late on the possible formation mechanisms
able to produce such cores and we conclude that they can be produced through
the coupling of different processes: (I) dynamical friction from the decay of
black hole orbits during galaxy mergers; (II) AGN driven gas outflows producing
fluctuations of the gravitational potential causing the removal of
collisionless matter from the central region of the cluster; (III) adiabatic
expansion in response to the slow expulsion of gas from the central region of
the cluster during the quiescent mode of AGN activity.
View original:
http://arxiv.org/abs/1112.2752
No comments:
Post a Comment