Thursday, January 5, 2012

1201.0885 (Maxime Bois et al.)

Simulations of binary galaxy mergers and the link with Fast Rotators, Slow Rotators, and Kinematically Distinct Cores    [PDF]

Maxime Bois, Eric Emsellem, Frédéric Bournaud, Katherine Alatalo, Leo Blitz, Martin Bureau, Michele Cappellari, Roger L. Davies, Timothy A. Davis, P. T. de Zeeuw, Pierre-Alain Duc, Sadegh Khochfar, Davor Krajnović, Harald Kuntschner, Pierre-Yves Lablanche, Richard M. McDermid, Raffaella Morganti, Thorsten Naab, Tom Oosterloo, Marc Sarzi, Nicholas Scott, Paolo Serra, Anne-Marie Weijmans, Lisa M. Young
We study the formation of early-type galaxies (ETGs) through mergers with a sample of 70 high-resolution numerical simulations of binary mergers of disc galaxies. These simulations encompass various mass ratios, initial conditions and orbital parameters. We find that binary mergers of disc galaxies with mass ratios of 3:1 and 6:1 are nearly always classified as Fast Rotators according to the Atlas3D criterion: they preserve the structure of the input fast rotating spiral progenitors. Major disc mergers (mass ratios of 2:1 and 1:1) lead to both Fast and Slow Rotators. Most of the Slow Rotators hold a stellar Kinematically Distinct Core (KDC) in their 1-3 central kilo-parsec: these KDCs are built from the stellar components of the progenitors. The mass ratio of the progenitors is a fundamental parameter for the formation of Slow Rotators in binary mergers, but it also requires a retrograde spin for the progenitor galaxies with respect to the orbital angular momentum. The importance of the initial spin of the progenitors is also investigated in the library of galaxy mergers of the GalMer project.
View original: http://arxiv.org/abs/1201.0885

No comments:

Post a Comment