1201.3936 (M. Rejkuba)
M. Rejkuba
Globular clusters are among the first objects used to establish the distance
scale of the Universe. In the 1970-ies it has been recognized that the
differential magnitude distribution of old globular clusters is very similar in
different galaxies presenting a peak at M_V ~ -7.5. This peak magnitude of the
so-called Globular Cluster Luminosity Function has been then established as a
secondary distance indicator. The intrinsic accuracy of the method has been
estimated to be of the order of ~0.2 mag, competitive with other distance
determination methods. Lately the study of the Globular Cluster Systems has
been used more as a tool for galaxy formation and evolution, and less so for
distance determinations. Nevertheless, the collection of homogeneous and large
datasets with the ACS on board HST presented new insights on the usefulness of
the Globular Cluster Luminosity Function as distance indicator. I discuss here
recent results based on observational and theoretical studies, which show that
this distance indicator depends on complex physics of the cluster formation and
dynamical evolution, and thus can have dependencies on Hubble type, environment
and dynamical history of the host galaxy. While the corrections are often
relatively small, they can amount to important systematic differences that make
the Globular Cluster Luminosity Function a less accurate distance indicator
with respect to some other standard candles.
View original:
http://arxiv.org/abs/1201.3936
No comments:
Post a Comment