Thursday, February 9, 2012

1011.5090 (Kevork N. Abazajian et al.)

Current and Future Constraints on Dark Matter from Prompt and Inverse-Compton Photon Emission in the Isotropic Diffuse Gamma-ray Background    [PDF]

Kevork N. Abazajian, Steve Blanchet, J. Patrick Harding
We perform a detailed examination of current constraints on annihilating and decaying dark matter models from both prompt and inverse-Compton emission photons, including both model-dependent and model-independent bounds. We also show that the observed isotropic diffuse gamma-ray background (DGRB), which provides one of the most conservative constraints on models of annihilating weak-scale dark matter particles, may enhance its sensitivity by a factor of ~2 to 3 (95% C.L.) as the Fermi-LAT experiment resolves DGRB contributing blazar sources with five years of observation. For our forecasts, we employ the results of constraints to the luminosity-dependent density evolution plus blazar spectral energy distribution sequence model, which is constrained by the DGRB and blazar source count distribution function.
View original: http://arxiv.org/abs/1011.5090

No comments:

Post a Comment