Thursday, February 9, 2012

1202.1723 (L. Ciotti et al.)

Separable triaxial potential-density pairs in MOND    [PDF]

L. Ciotti, H. Zhao, T. de Zeeuw
We study mass models that correspond to MOND (triaxial) potentials for which the Hamilton-Jacobi equation separates in ellipsoidal coordinates. The problem is first discussed in the simpler case of deep-MOND systems, and then generalized to the full MOND regime. We prove that the Kuzmin property for Newtonian gravity still holds, i.e., that the density distribution of separable potentials is fully determined once the density profile along the minor axis is assigned. At variance with the Newtonian case, the fact that a positive density along the minor axis leads to a positive density everywhere remains unproven. We also prove that (i) all regular separable models in MOND have a vanishing density at the origin, so that they would correspond to centrally dark-matter dominated systems in Newtonian gravity; (ii) triaxial separable potentials regular at large radii and associated with finite total mass leads to density distributions that at large radii are not spherical and decline as ln(r)/r^5; (iii) when the triaxial potentials admit a genuine Frobenius expansion with exponent 0View original: http://arxiv.org/abs/1202.1723

No comments:

Post a Comment