Guinevere Kauffmann, Cheng Li, Jian Fu, Amelie Saintonge, Barbara Catinella, Linda J. Tacconi, Carsten Kramer, Reinhard Genzel, Sean Moran, David Schiminovich
We compare the semi-analytic models of galaxy formation of Fu et al. (2010),
which track the evolution of the radial profiles of atomic and molecular gas in
galaxies, with gas fraction scaling relations derived from the COLD GASS survey
(Saintonge et al 2011). The models provide a good description of how condensed
baryons in galaxies with gas are partitioned into stars, atomic and molecular
gas as a function of galaxy stellar mass and surface density. The models do not
reproduce the tight observed relation between stellar surface density and
bulge-to-disk ratio for this population. We then turn to an analysis of
the"quenched" population of galaxies without detectable cold gas. The current
implementation of radio-mode feedback in the models disagrees strongly with the
data. In the models, gas cooling shuts down in nearly all galaxies in dark
matter halos above a mass of 10**12 M_sun. As a result, stellar mass is the
observable that best predicts whether a galaxy has little or no neutral gas. In
contrast, our data show that quenching is largely independent of stellar mass.
Instead, there are clear thresholds in bulge-to-disk ratio and in stellar
surface density that demarcate the location of quenched galaxies. We propose
that processes associated with bulge formation play a key role in depleting the
neutral gas in galaxies and that further gas accretion is suppressed following
the formation of the bulge, even in dark matter halos of low mass.
View original:
http://arxiv.org/abs/1202.2972
No comments:
Post a Comment