M. A. Aragon-Calvo, A. S. Szalay
Contrary to the common view voids have very complex internal structure and dynamics. Here we show how the hierarchy of structures in the density field inside voids is reflected by a similar hierarchy of structures in the velocity field. Voids defined by dense filaments and clusters can de described as simple expanding domains with coherent flows everywhere except at their boundaries. At scales smaller that the void radius the velocity field breaks into expanding sub-domains corresponding to sub- voids. These sub-domains break into even smaller sub-sub domains at smaller scales resulting in a nesting hierarchy of locally expanding domains. The ratio between the magnitude of the velocity field responsible for the expansion of the void and the velocity field defining the sub voids is approximately one order of magnitude. The small-scale components of the velocity field play a minor role in the shaping of the voids but they define the local dynamics directly affecting the processes of galaxy formation and evolution. The super-Hubble expansion inside voids makes them cosmic magnifiers by stretching their internal primordial density fluctuations allowing us to probe the small scales in the primordial density field. Voids also act like time machines by "freezing" the development of the medium-scale density fluctuations responsible for the formation of the tenuous web of structures seen connecting proto galaxies in computer simulations. As a result of this freezing haloes in voids can remain "connected" to this tenuous web until the present time. This may have an important effect in the formation and evolution of galaxies in voids by providing an efficient gas accretion mechanism via coherent low-velocity streams that can keep a steady inflow of matter for extended periods of time.
View original:
http://arxiv.org/abs/1203.0248
No comments:
Post a Comment