Monday, March 5, 2012

1203.0310 (Martin Raue et al.)

Probing the peak of the star formation rate density with the extragalactic background light    [PDF]

Martin Raue, Manuel Meyer
The extragalactic background light (EBL), i.e., the diffuse meta-galactic photon field in the ultraviolet to infrared, is dominated by the emission from stars in galaxies. It is, therefore, intimately connected with the integrated star formation rate density (SFRD). In this paper, the SFRD is constrained using recent limits on the EBL density derived from observations of distant sources of high and very-high energy gamma-rays. The stellar EBL contribution is modeled utilizing simple stellar population spectra including dust attenuation and emission. A wide range of values for the different model parameters (SFRD(z), metallicity, dust absorption) is investigated and their impact on the resulting EBL is studied. The calculated EBL densities are compared with the specific EBL density limits and constraints on the SFRD are derived. For the fiducial model, adopting a Chabrier initial mass function (IMF), the SFRD is constrained to ~< 0.1 M_solar yr^-1 Mpc^-3 and < 0.2 M_solar yr^-1 Mpc^-3 for a redshift of z~1 and z~2, respectively. These limits are in tension with SFRD measurements derived from instantaneous star formation tracers, in particular for high values derived for a peak of the SFRD at a redshift of z~1. While the tension for the conservative fiducial model in this study is not yet overly strong, the tension increases when applying plausible changes to the model parameters, e.g., using a Salpeter instead of a Chabrier IMF or a adopting a sub-solar metallicity.
View original: http://arxiv.org/abs/1203.0310

No comments:

Post a Comment