Monday, March 19, 2012

1203.3199 (J. Melbourne et al.)

The Spectral Energy Distributions and Infrared Luminosities of z \approx 2 Dust Obscured Galaxies from Herschel and Spitzer    [PDF]

J. Melbourne, B. T. Soifer, Vandana Desai, Alexandra Pope, Lee Armus, Arjun Dey, R. S. Bussmann, B. T. Jannuzi, Stacey Alberts
Dust-obscured galaxies (DOGs) are a subset of high-redshift (z \approx 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g. L_{IR} > 10^{12} Lsun). We present new far-infrared photometry, at 250, 350, and 500 um (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR, confirming their high IR luminosities, which range from 10^{11.6} Lsun < L_{IR} (8-1000 um) <10^{13.6} Lsun. 90% of the Herschel detected DOGs in this sample are ULIRGs and 30% have L_{IR} > 10^{13} Lsun. The rest-frame near-IR (1 - 3 um) SEDs of the Herschel detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with "power-law" SEDs in the rest-frame near-IR show observed-frame 250/24 um flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar "bump" in their rest-frame near-IR show observed-frame 250/24 um flux density ratios similar to local star-bursting ULIRGs like NGC 6240. For the Herschel detected DOGs, accurate estimates (within \approx 25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g. from Spitzer observed-frame 24 um luminosities). Herschel detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 um luminosity (the IR8= L_{IR}(8-1000 um)/v L_{v}(8 um) parameter of Elbaz et al. 2011). Instead of lying on the z=1-2 "infrared main-sequence" of star forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel detected DOGs are similar to scaled up versions of local ULIRGs in terms of 250/24 um flux density ratio, and IR8, they tend to have cooler far-IR dust temperatures (20-40 K for DOGs vs. 40-50 K for local ULIRGs). Abridged.
View original: http://arxiv.org/abs/1203.3199

No comments:

Post a Comment