Tuesday, May 15, 2012

1205.2732 (Kristen. B. W. McQuinn et al.)

Observational Constraints on the Molecular Gas Content in Nearby Starburst Dwarf Galaxies    [PDF]

Kristen. B. W. McQuinn, Evan D. Skillman, Julianne J. Dalcanton, Andrew E. Dolphin, John M. Cannon, Jon Holtzman, Daniel R. Weisz, Benjamin F. Williams
Using star formation histories derived from optically resolved stellar populations in nineteen nearby starburst dwarf galaxies observed with the Hubble Space Telescope, we measure the stellar mass surface densities of stars newly formed in the bursts. By assuming a star formation efficiency (SFE), we then calculate the inferred gas surface densities present at the onset of the starbursts. Assuming a SFE of 1%, as is often assumed in normal star-forming galaxies, and assuming that the gas was purely atomic, translates to very high HI surface densities (~10^2-10^3 Msun pc^-2), which are much higher than have been observed in dwarf galaxies. This implies either higher values of SFE in these dwarf starburst galaxies or the presence of significant amounts of H_2 in dwarfs (or both). Raising the assumed SFEs to 10% or greater (in line with observations of more massive starbursts associated with merging galaxies), still results in HI surface densities higher than observed in 10 galaxies. Thus, these observations appear to require that a significant fraction of the gas in these dwarf starbursts galaxies was in the molecular form at the onset of the bursts. Our results imply molecular gas column densities in the range 10^19-10^21 cm^-2 for the sample. In those galaxies where CO observations have been made, these densities correspond to values of the CO-H_2 conversion factor (X_CO) in the range >3-80x10^20 cm^-2 (K km s^-1)^-1, or up to 40x greater than Galactic X_CO values.
View original: http://arxiv.org/abs/1205.2732

No comments:

Post a Comment