Thursday, June 14, 2012

1206.2640 (Holger A. Schlagenhaufer et al.)

A model of the anisotropic correlation function xi(rp, pi) in redshift space including redshift errors    [PDF]

Holger A. Schlagenhaufer, Stefanie Phleps, Ariel G. Sanchez
With the advent of very large volume, wide-angle photometric redshift surveys like e.g. Pan-STARRS, DES, or PAU, which aim at using the spatial distribution of galaxies as a means to constrain the equation of state parameter of dark energy, w_DE, it has become extremely important to understand the influence of redshift inaccuracies on the measurement. We have developed a new model for the anisotropic two point large-scale (r > 64 h^-1 Mpc) correlation function xi(rp,pi), in which nonlinear structure growth and nonlinear coherent infall velocities are taken into account, and photometric redshift errors can easily be incorporated. In order to test its validity and investigate the effects of photometric redshifts, we compare our model with the correlation function computed from a suite of 50 large-volume, moderate-resolution numerical N-body simulation boxes, where we can perform the analysis not only in real- and redshift space, but also simulate the influence of a gaussian redshift error distribution with an absolute rms of sigma_z= 0.015, 0.03, 0.06, and 0.12, respectively. We conclude that for the given volume (V_box =2.4 h^-3 Gpc^3) and number density (n ~ 1.25 10^-4) of objects the full shape of xi(rp,pi) is modeled accurately enough to use it to derive unbiased constraints on the equation of state parameter of dark energy w_DE and the linear bias b, even in the presence of redshift errors of the order of sigma_z = 0.06.
View original: http://arxiv.org/abs/1206.2640

No comments:

Post a Comment