Friday, February 8, 2013

1302.1587 (Chris J. Willott et al.)

Redshift 6.4 host galaxies of 10^8 solar mass black holes: low star formation rate and dynamical mass    [PDF]

Chris J. Willott, Alain Omont, Jacqueline Bergeron
We present ALMA observations of rest-frame far-infrared continuum and [CII] line emission in two z=6.4 quasars with black hole masses of ~10^8 M_sun. CFHQS J0210-0456 is detected in the continuum with a 1.2 mm flux of 120+/-35 microJy, whereas CFHQS J2329-0301 is undetected at a similar noise level. J2329-0301 has a star formation rate limit of <36 M_sun/yr, considerably below the typical value at all redshifts for this bolometric luminosity. We speculate that this quasar is observed at a relatively rare phase where quasar feedback has effectively shut down star formation in the host galaxy. [CII] emission is also detected only in J0210-0456. The ratio of [CII] to far-infrared luminosity is similar to at low redshift, suggesting the offset in the relationships between this ratio and far-infrared luminosity at low- and high-redshift may be partially due to a selection effect from the limited sensitivity of previous observations. The [CII] line of J0210-0456 is relatively narrow (FWHM=189+/-18 km/s), indicating a dynamical mass substantially lower than the local black hole - velocity dispersion correlation. The [CII] line is marginally resolved at 0.7" resolution with the blue and red wings spatially offset by 0.5" (3 kpc) and a smooth velocity gradient of 100 km/s across a scale of 6 kpc, possibly due to rotation of a galaxy-wide disk. These observations are consistent with the idea that stellar mass growth lags black hole accretion for quasars at this epoch with respect to more recent times.
View original: http://arxiv.org/abs/1302.1587

No comments:

Post a Comment