Friday, February 8, 2013

1302.1841 (Erminia Calabrese et al.)

Cosmological Parameters from Pre-Planck CMB Measurements    [PDF]

Erminia Calabrese, Renée A. Hlozek, Nick Battaglia, Elia S. Battistelli, J. Richard Bond, Jens Chluba, Devin Crichton, Sudeep Das, Mark J. Devlin, Joanna Dunkley, Rolando Dünner, Marzieh Farhang, Megan B. Gralla, Amir Hajian, Mark Halpern, Matthew Hasselfield, Adam D. Hincks, Kent D. Irwin, Arthur Kosowsky, Thibaut Louis, Tobias A. Marriage, Kavilan Moodley, Laura Newburgh, Michael D. Niemack, Mike R. Nolta, Lyman A. Page, Neelima Sehgal, Blake D. Sherwin, Jonathan L. Sievers, Cristóbal Sifón, David N. Spergel, Suzanne T. Staggs, Eric R. Switzer, Ed Wollack
Recent data from the WMAP, ACT and SPT experiments provide precise measurements of the cosmic microwave background temperature power spectrum over a wide range of angular scales. The combination of these observations is well fit by the standard, spatially flat LCDM cosmological model, constraining six free parameters to within a few percent. The scalar spectral index, n_s = 0.9678 +/- 0.0088, is less than unity at the 3.6 sigma level, consistent with simple models of inflation. The damping tail of the power spectrum at high resolution, combined with the amplitude of gravitational lensing measured by ACT and SPT, constrains the effective number of relativistic species to be N_eff = 3.24 +/- 0.39, in agreement with the standard model's three species of light neutrinos.
View original: http://arxiv.org/abs/1302.1841

No comments:

Post a Comment