A. Sandberg, G. Östlin, M. Hayes, K. Fathi, D. Schaerer, J. M. Mas-Hesse, T. Rivera-Thorsen
Context. The Lyman alpha emission line of galaxies is an important tool for finding galaxies at high redshift, and thus probe the structure of the early universe. However, the resonance nature of the line and its sensitivity to dust and neutral gas is still not fully understood. Aims. We present measurements of the velocity, covering fraction and optical depth of neutral gas in front of two well known local blue compact galaxies that show Lyman alpha in emission: ESO 338-IG 04 and Haro 11. We thus test observationally the hypothesis that Lyman alpha can escape through neutral gas by being Doppler shifted out of resonance. Methods. We present integral field spectroscopy from the GIRAFFE/Argus spectrograph at VLT/FLAMES in Paranal, Chile. The excellent wavelength resolution allows us to accurately measure the velocity of the ionized and neutral gas through the H-alpha emission and Na D absorption, which traces the ionized medium and cold interstellar gas, respectively. We also present independent measurements with the VLT/X-shooter spectrograph which confirm our results. Results. For ESO 338-IG04, we measure no significant shift of neutral gas. The best fit velocity is -15 (16) km/s. For Haro 11, we see an outflow from knot B at 44 (13) km/s and infalling gas towards knot C with 32 (12) km/s. Based on the relative strength of the Na D absorption lines, we estimate low covering fractions of neutral gas (down to 10%) in all three cases. Conclusions. The Na D absorption likely occurs in dense clumps with higher column densities than where the bulk of the Ly-alpha scattering takes place. Still, we find no strong correlation between outflowing neutral gas and a high Lyman alpha escape fraction. The Lyman alpha photons from these two galaxies are therefore likely escaping due to a low column density and/or covering fraction.
View original:
http://arxiv.org/abs/1303.2011
No comments:
Post a Comment