Helene M. Courtois, Daniel Pomarede, R. Brent Tully, Denis Courtois
The large scale structure of the universe is a complex web of clusters, filaments, and voids. Its properties are informed by galaxy redshift surveys and measurements of peculiar velocities. Wiener Filter reconstructions recover three-dimensional velocity and total density fields. The richness of the elements of our neighborhood are revealed with sophisticated visualization tools. A key component of this paper is an accompanying movie. The ability to translate and zoom helps the viewer follow structures in three dimensions and grasp the relationships between features on different scales while retaining a sense of orientation. The ability to dissolve between scenes provides a technique for comparing different information, for example, the observed distribution of galaxies, smoothed representations of the distribution accounting for selection effects, observed peculiar velocities, smoothed and modeled representations of those velocities, and inferred underlying density fields. The agreement between the large scale structure seen in redshift surveys and that inferred from reconstructions based on the radial peculiar velocities of galaxies strongly supports the standard model of cosmology where structure forms from gravitational instabilities and galaxies form at the bottom of potential wells.
View original:
http://arxiv.org/abs/1306.0091
No comments:
Post a Comment