J. Urrestilla, N. Bevis, M. Hindmarsh, M. Kunz
We present a significant update of the constraints on the Abelian Higgs
cosmic string tension by cosmic microwave background (CMB) data, enabled both
by the use of new high-resolution CMB data from suborbital experiments as well
as the latest results of the WMAP satellite, and by improved predictions for
the impact of Abelian Higgs cosmic strings on the CMB power spectra. The new
cosmic string spectra (presented in a previous work) were improved especially
for small angular scales, through the use of larger Abelian Higgs string
simulations and careful extrapolation. If Abelian Higgs strings are present
then we find improved bounds on their contribution to the CMB anisotropies,
f10< 0.095, and on their tension, G\mu< 0.57 x 10^-6, both at 95% confidence
level using WMAP7 data; and f10 < 0.048 and G\mu < 0.42 x 10^-6 using all the
CMB data. We also find that using all the CMB data, a scale invariant initial
perturbation spectrum, ns=1, is now disfavoured at 2.4\sigma\ even if strings
are present. A Bayesian model selection analysis no longer indicates a
preference for strings.
View original:
http://arxiv.org/abs/1108.2730
No comments:
Post a Comment