Friday, December 9, 2011

1112.1820 (Andrei Mesinger et al.)

The kinetic Sunyaev-Zel'dovich signal from inhomogeneous reionization: a parameter space study    [PDF]

Andrei Mesinger, Matthew McQuinn, David Spergel
[ABRIDGED] Inhomogeneous reionization acts as a source of arcminute-scale anisotropies in the cosmic microwave background (CMB), the most important of which is the kinetic Sunyaev-Zel'dovich (kSZ) effect. Observational efforts with the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT) are poised to detect this signal for the first time. Indeed, recent SPT measurements place a bound on the dimensionless kSZ power spectrum around a multipole of l=3000 of P_tot < 2.8 (6) micro K^2 at 95% C.L., by ignoring (allowing) correlations between the thermal Sunyaev-Zel'dovich (tSZ) effect and the cosmic infrared background (CIB). To interpret these and upcoming observations, we compute the kSZ signal from a suite of ~ 100 reionization models using the publicly available code 21cmFAST. Our physically motivated reionization models are parameterized by the ionizing efficiency of high-redshift galaxies, the minimum virial temperature of halos capable of hosting stars, and the ionizing photon mean free path. We predict the contribution of patchy reionization to be P_patchy = 1.5-3.5 micro K^2. Therefore, even when conservatively adopting a low estimate of the post-reionization signal, P_OV ~ 2 micro K^2, none of our models are consistent with the aggressive 2sigma SPT bound that does not include correlations. This implies that either: (i) the early stages of reionization occurred in a much more homogeneous manner than suggested by the stellar-driven scenarios we explore, such as would be the case if, e.g., very high energy X-rays or exotic particles contributed significantly; and/or (ii) that there is a significant correlation between the CIB and the tSZ. On the other hand, the conservative SPT bound is compatible with all of our models, and is on the boarder of constraining reionization.
View original: http://arxiv.org/abs/1112.1820

No comments:

Post a Comment