Friday, December 9, 2011

1112.1922 (Pierre-Alain Duc et al.)

Tides in colliding galaxies    [PDF]

Pierre-Alain Duc, Florent Renaud
Long tails and streams of stars are the most noticeable upshots of galaxy collisions. Their origin as gravitational, tidal, disturbances has however been recognized only less than fifty years ago and more than ten years after their first observations. This Review describes how the idea of galactic tides emerged, in particular thanks to the advances in numerical simulations, from the first ones that included tens of particles to the most sophisticated ones with tens of millions of them and state-of-the-art hydrodynamical prescriptions. Theoretical aspects pertaining to the formation of tidal tails are then presented. The third part of the review turns to observations and underlines the need for collecting deep multi-wavelength data to tackle the variety of physical processes exhibited by collisional debris. Tidal tails are not just stellar structures, but turn out to contain all the components usually found in galactic disks, in particular atomic / molecular gas and dust. They host star-forming complexes and are able to form star-clusters or even second-generation dwarf galaxies. The final part of the review discusses what tidal tails can tell us (or not) about the structure and content of present-day galaxies, including their dark components, and explains how tidal tails may be used to probe the past evolution of galaxies and their mass assembly history. On-going deep wide-field surveys disclose many new low-surface brightness structures in the nearby Universe, offering great opportunities for attempting galactic archeology with tidal tails.
View original: http://arxiv.org/abs/1112.1922

No comments:

Post a Comment