P. Noterdaeme, P. Laursen, P. Petitjean, S. D. Vergani, M. -J. Maureira, C. Ledoux, J. P. U. Fynbo, S. López, R. Srianand
We present the detection of Ly-alpha, [OIII] and H-alpha emission associated
with an extremely strong DLA system (N(HI) = 10^22.10 cm^-2) at z=2.207 towards
the quasar SDSS J113520-001053. This is the largest HI column density ever
measured along a QSO line of sight, though typical of what is seen in GRB-DLAs.
This absorption system also classifies as ultrastrong MgII system with
W2796_r=3.6 A. The mean metallicity of the gas ([Zn/H]=-1.1) and dust depletion
factors ([Zn/Fe]=0.72, [Zn/Cr]=0.49) are consistent with (and only marginally
larger than) the mean values found in the general QSO-DLA population. The
[OIII]-Ha emitting region has a very small impact parameter with respect to the
QSO line of sight, b=0.1", and is unresolved. From the Ha line, we measure
SFR=25 Msun/yr. The Ly-a line is double-peaked and is spatially extended. More
strikingly, the blue and red Ly-a peaks arise from distinct regions extended
over a few kpc on either side of the star-forming region. We propose that this
is the consequence of Ly-a transfer in outflowing gas. The presence of
starburst-driven outflows is also in agreement with the large SFR together with
a small size and low mass of the galaxy (Mvir~10^10 Msun). From the stellar UV
continuum luminosity of the galaxy, we estimate an age of at most a few 10^7
yr, again consistent with a recent starburst scenario. We interpret the data as
the observation of a young, gas rich, compact starburst galaxy, from which
material is expelled through collimated winds powered by the vigorous star
formation activity. We substantiate this picture by modelling the radiative
transfer of Ly-a photons in the galactic counterpart. Though our model (a
spherical galaxy with bipolar outflowing jets) is a simplistic representation
of the true gas distribution and velocity field, the agreement between the
observed and simulated properties is particularly good. [abridged]
View original:
http://arxiv.org/abs/1202.0280
No comments:
Post a Comment