Jinn-Ouk Gong, Sin Kyu Kang, Hyun Min Lee
We consider the Higgs inflation in the extension of the Standard Model with
two Higgs doublets coupled to gravity non-minimally. In the presence of an
approximate global U(1) symmetry in the Higgs sector, both radial and angular
modes of neutral Higgs bosons drive inflation where large non-Gaussianity is
possible from appropriate initial conditions on the angular mode. We also
discuss the case with single-field inflation for which the U(1) symmetry is
broken to a Z_2 subgroup. We show that inflationary constraints, perturbativity
and stability conditions restrict the parameter space of the Higgs quartic
couplings at low energy in both multi- and single-field cases. Focusing on the
inert doublet models where Z_2 symmetry remains unbroken at low energy, we show
that the extra neutral Higgs boson can be a dark matter candidate consistent
with the inflationary constraints. The doublet dark matter is always heavy in
multi-field inflation while it can be light due to the suppression of the
co-annihilation in single-field inflation. The implication of the extra quartic
couplings on the vacuum stability bound is also discussed in the light of the
recent LHC limits on the Higgs mass.
View original:
http://arxiv.org/abs/1202.0288
No comments:
Post a Comment