Samuel K. Lee, Annika H. G. Peter
We explore the ability of directional nuclear-recoil detectors to constrain
the local velocity distribution of weakly interacting massive particle (WIMP)
dark matter by performing Bayesian parameter estimation on simulated
recoil-event data sets. We discuss in detail how directional information, when
combined with measurements of the recoil-energy spectrum, helps break
degeneracies in the velocity-distribution parameters. We also consider the
possibility that velocity structures such as cold tidal streams or a dark disk
may also be present in addition to the Galactic halo. Assuming a
carbon-tetrafluoride detector with a 30-kg-yr exposure, a 50-GeV WIMP mass, and
a WIMP-nucleon spin-dependent cross-section of 0.001 pb, we show that the
properties of a cold tidal stream may be well constrained. However, measurement
of the parameters of a dark-disk component with a low lag speed of ~50 km/s may
be challenging unless energy thresholds are improved.
View original:
http://arxiv.org/abs/1202.5035
No comments:
Post a Comment