Wednesday, November 21, 2012

1211.4687 (B. Vollmer et al.)

Simultaneous multi-band detection of Low Surface Brightness galaxies with Markovian modelling    [PDF]

B. Vollmer, B. Perret, M. Petremand, F. Lavigne, Ch. Collet, W. van Driel, F. Bonnarel, M. Louys, S. Sabatini, L. A. MacArthur
We present an algorithm for the detection of Low Surface Brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings - typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. To assess the robustness of our method, the method was applied to a set of 18 B and I band images (covering 1.3 square degrees in total) of the Virgo cluster. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (i) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (ii) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ~20% more mock LSB galaxies and ~40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is reached for sources with r_e > 3" at a mean surface brightness level of mu_g=27.7 mag/arcsec^2 and a central surface brightness of mu^0 g=26.7 mag/arcsec^2. About 10% of the false positives are artifacts, the rest being background galaxies. We have found our method to be complementary to the application of matched filters and an optimized use of SExtractor, and to have the following advantages: it is scale-free, can be applied simultaneously to several bands, and is well adapted for crowded regions on the sky.
View original: http://arxiv.org/abs/1211.4687

No comments:

Post a Comment